Polynomial inequalities on general subsets of $R^N$
نویسندگان
چکیده
منابع مشابه
Polynomial Approximation on Convex Subsets of Rn
Abstract. Let K be a closed bounded convex subset of Rn ; then by a result of the first author, which extends a classical theorem of Whitney there is a constantwm(K ) so that for every continuous function f on K there is a polynomial φ of degree at most m − 1 so that | f (x)− φ(x)| ≤ wm(K ) sup x,x+mh∈K |1h ( f ; x)|. The aim of this paper is to study the constant wm(K ) in terms of the dimensi...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملSobolev W 1 p-spaces on closed subsets of Rn
For each p > n we use local oscillations and doubling measures to give intrinsic characterizations of the restriction of the Sobolev space W 1 p (R n) to an arbitrary closed subset of Rn.
متن کاملWeakly Infinite Dimensional Subsets of RN
The Continuum Hypothesis implies an Erdös-Sierpiński like duality between the ideal of first category subsets of R , and the ideal of countable dimensional subsets of R. The algebraic sum of a Hurewicz subset a dimension theoretic analogue of Sierpinski sets and Lusin sets of R with any compactly countable dimensional subset of R has first category.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1989
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-57-1-127-136